фотомагнитный - significado y definición. Qué es фотомагнитный
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es фотомагнитный - definición

ФИЗИЧЕСКОЕ ЯВЛЕНИЕ
Фотоэлектрический эффект; Фотоэлектронная эмиссия; Внутренний фотоэффект; Внешний фотоэффект; Фотопьезоэлектрический эффект; Фотомагнитный эффект; Фотоэлектричество; Фототок; Векториальный фотоэффект; Многофотонный фотоэффект; Фотоэффект внутренний
  • Внешний фотоэффект
  • Схема учебного эксперимента по исследованию фотоэффекта. Из света берётся узкий диапазон частот и направляется на [[катод]] внутри вакуумного прибора. Напряжением между катодом и анодом устанавливается энергетический порог между ними. По току судят о достижении электронами анода.

Фотоэффект         
Фотоэффе́кт, или фотоэлектри́ческий эффе́кт, — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект.
фотоэффект         
м.
Изменение электрических свойств вещества под действием электромагнитных излучений (в физике).
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ         
явление испускания электронов веществом под действием света. Было открыто в 1887 Г.Герцем, обнаружившим, что искровой разряд в воздушном промежутке легче возникает при наличии поблизости другого искрового разряда. Герц экспериментально показал, что это связано с ультрафиолетовым излучением второго разряда. В 1889 Дж.Томсон и Ф.Ленард установили, что при освещении поверхности металла в откачанном сосуде она испускает электроны. Продолжая эти исследования, Ленард продемонстрировал в 1902, что число электронов, вылетающих в 1 с с поверхности металла, пропорционально интенсивности света, тогда как их энергия зависит лишь от световой длины волны, т.е. цвета. Оба эти факта противоречили выводам теории Максвелла о механизме испускания и поглощения света. Согласно этой теории, интенсивность света служит мерой его энергии и, конечно, должна влиять на энергию испускаемых электронов. См. также ЭЛЕКТРОН
.
В 1905 А.Эйнштейн, основываясь на более ранней работе М.Планка, посвященной тепловому излучению, выдвинул гипотезу, согласно которой поведение света в определенных отношениях сходно с поведением облака частиц, энергия каждой из которых пропорциональна частоте света. Позднее эти частицы были названы фотонами. Их энергия (квант энергии, согласно Планку и Эйнштейну) дается формулой Е = h?, где h - универсальная постоянная, впервые введенная Планком и названная его именем, а . - частота света. Эта гипотеза хорошо объясняет результаты опытов Ленарда: если каждый фотон в результате столкновения выбивает один электрон, то более интенсивному свету данной частоты соответствует большее число фотонов и такой свет будет выбивать больше электронов; однако энергия каждого их них остается прежней.
Эйнштейн высказал предположение, что электроны, выходя с поверхности металла, теряют определенную энергию W, называемую работой выхода. Кроме того, большинство электронов передает часть своей энергии окружающим электронам. Таким образом, максимальная энергия фотоэлектрона, выбиваемого фотоном данной частоты, описывается выражением Емакс = h. - W, где W - величина, зависящая от природы металла и состояния его поверхности. Этот закон получил надежное экспериментальное подтверждение, особенно в опытах Р.Милликена в 1916. За работы в области фотоэффекта Эйнштейну была присуждена Нобелевская премия по физике за 1922.
При определенных условиях фотоэффект возможен в газах и атомных ядрах, из которых фотоны с достаточно высокой энергией могут выбивать протоны и рождать мезоны. Фотоэлектрические свойства поверхности металла широко используются для управления электрическим током посредством светового пучка, при воспроизведении звука со звуковой дорожки кинопленки, а также в многочисленных приборах контроля, счета и сортировки. Фотоэлементы находят применение также в светотехнике. См. также СВЕТ; ФОТОМЕТРИЯ; КВАНТОВАЯ МЕХАНИКА.

Wikipedia

Фотоэффект

Фотоэффе́кт, или фотоэлектри́ческий эффе́кт, — явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества. В конденсированных (твёрдых и жидких) веществах выделяют внешний (поглощение фотонов сопровождается вылетом электронов за пределы вещества) и внутренний (электроны, оставаясь в веществе, изменяют в нём своё энергетическое состояние) фотоэффект. Фотоэффект в газах состоит в ионизации атомов или молекул под действием излучения.

¿Qué es Фотоэффект? - significado y definición